
Moab
How do NODEAVAILABILITYPOLICY and

NODEALLOCATIONPOLICY work?
Here is a tutorial showing how some common settings of the following Moab
parameters work:

JOBNODEMATCHPOLICY EXACTNODE

JOBNODEMATCHPOLICY AUTO

NODEAVAILABILITYPOLICY DEDICATED:PROC

NODEAVAILABILITYPOLICY COMBINED:PROC

NODEALLOCATIONPOLICY CPULOAD

For all the examples here, imagine that we have 2 nodes (node00, node01) each
with 4 procs.For these examples, CGROUPS was enabled and Moab 9.1.1 and
Torque 6.1.1.1 were used.

Effect of JOBNODEMATCHPOLICY.

Let’s start with these settings:

JOBNODEMATCHPOLICY EXACTNODE // This requires the # of nodes used to be
EXACT.

NODEAVAILABILITYPOLICY DEDICATED:PROC

NODEALLOCATIONPOLICY LASTAVAILABLE

Assume our system is idle and we execute the following command:

echo sleep 100|msub -l nodes=2:ppn=2,walltime=200

“mdiag -n” shows:

--

Name State Procs Memory Opsys

node00 Running 2:4 32202:32202 linux
Page 1 / 7

(c) 2025 Shawn Hoopes <shoopes@adaptivecomputing.com> | 2025-07-15 22:42
URL: /phpmyfaq/index.php?action=artikel&cat=1&id=202&artlang=en

/phpmyfaq/index.php?action=artikel&cat=1&id=202&artlang=en

Moab
node01 Running 2:4 32202:32202 linux

----- --- 4:8 64404:64404 -----

Total Nodes: 2 (Active: 2 Idle: 0 Down: 0)

--

Here Moab chose two nodes as requested.

If we change JOBNODEMATCHPOLICY to AUTO (or let it default) then run the same

experiment on our idle system, “mdiag -n” shows:

--

Name State Procs Memory Opsys

node00 Idle 4:4 32202:32202 linux

node01 Busy 0:4 32202:32202 linux

----- --- 4:8 64404:64404 -----

Total Nodes: 2 (Active: 1 Idle: 1 Down: 0)

Here Moab packs all 4 procs on the same node. Which node is picked depends on
NODEALLOCATIONPOLICY. Which is set to LASTAVAILABLE.

Effects of NODEAVAILABILITYPOLICY

NODEAVAILABILITYPOLICY helps Moab decide if a node is BUSY or not.

New jobs cannot be scheduled on a node which is BUSY.

Let’s start with these settings:

JOBNODEMATCHPOLICY AUTO

NODEAVAILABILITYPOLICY DEDICATED:PROC

NODEALLOCATIONPOLICY LASTAVAILABLE

Page 2 / 7
(c) 2025 Shawn Hoopes <shoopes@adaptivecomputing.com> | 2025-07-15 22:42

URL: /phpmyfaq/index.php?action=artikel&cat=1&id=202&artlang=en

/phpmyfaq/index.php?action=artikel&cat=1&id=202&artlang=en

Moab
NODEAVAILABILITYPOLICY DEDICATED:PROC tells Moab

to calculate the number of available procs on a node as follows:

AvailableProcs = Configured – Dedicated.

Assuming Moab has not scheduled any jobs, running “mdiag -n” shows:

Name State Procs Memory Opsys

node00 Idle 4:4 32202:32202 linux

node01 Idle 4:4 32202:32202 linux

----- --- 8:8 64404:64404 -----

Total Nodes: 2 (Active: 0 Idle: 2 Down: 0)

–--

We see here that there are 8 idle procs out of 8 configured. Since we are using
DEDICATED:PROC it does not matter what the cpu loading is on node00 and
node01. If fact, one could log into node00 and node01 and manually start processes
that utilize 100% of each proc and Moab would still report 8 idle procs. Availability
of procs is not affected by cpu utilization with NODEAVAILABILITYPOLICY
DEDICATED:PROC.

 Again, assume our system is idle. Let’s start a job which which needs 1 node and 1
proc by executing “echo sleep 100|msub -l nodes=1:ppn=1,walltime=200”.

 Now “mdiag -n” shows:

Name State Procs Memory Opsys

node00 Idle 4:4 32202:32202 linux

node01 Running 3:4 32202:32202 linux

----- --- --- 7:8 64404:64404 -----

 Total Nodes: 2 (Active: 1 Idle: 1 Down: 0)
Page 3 / 7

(c) 2025 Shawn Hoopes <shoopes@adaptivecomputing.com> | 2025-07-15 22:42
URL: /phpmyfaq/index.php?action=artikel&cat=1&id=202&artlang=en

/phpmyfaq/index.php?action=artikel&cat=1&id=202&artlang=en

Moab
 node01 was choosen because the default NODEALLOCATIONPOLICY is
LASTAVAILABLE. If the policy had been FIRSTAVAILABLE, node00 would have been
chosen. Now imagine that the job we just started used 100% of all 4 procs on
node01. Moab would still report 3 idle procs on node01.

 If we rapidly execute the same command 7 more times, “mdiag -n” shows:

 --

Name State Procs Memory Opsys

node00 Busy 0:4 32202:32202 linux

node01 Busy 0:4 32202:32202 linux

----- --- 0:8 64404:64404 -----

 Total Nodes: 2 (Active: 2 Idle: 0 Down: 0)

 All 8 jobs are running and no procs are available. If we execute the same command
once more, the job will be eligible, but not running because there are no procs
available. Because these jobs are all doing nothing but a “sleep”, they are hardly
loading the procs. On the system which I am using to test these commands the
system is 98% idle. But, since we are using DEDICATED:PROC we cannot take
advantage of those available cpu cycles. This would not be good in a timeshare
system; however, in many HPC environments, guaranteeing exclusive access to a
resource is often more important than sharing a resource.

Let’s start over with an idle system and let’s change NODEAVAILABILITYPOLICY to
COMBINED:

 NODEAVAILABILITYPOLICY COMBINED:PROC

 Now Moab will calculate available procs on a node based on Utilized and Dedicated:

 AvailableProcs = Configured – max(Dedicated, Utilized)

 See the Moab documentation for a definition of Utilized and how it relates to “Load
Average”. Utilized is an approximation for sum of the the proc utilizations on a
node. For example if the individual proc utilizations on a node with 4 procs were (0,
75%, 50%, 25%), then the equivalent in “utilized procs” would be (0 + 75 + 50 +
25)/100 = 1.5procs. Ignoring I/O, runQ, and many other issues, this corresponds
roughly to “Load Average” on unix systems. “Load Average” is shown by the “top”
command, but its definition is more complicated than presented here and varies
between different flavors of unix.

Using NODEAVAILABILITYPOLICY COMBINED:PROC, here is what “mdiag -n” shows
Page 4 / 7

(c) 2025 Shawn Hoopes <shoopes@adaptivecomputing.com> | 2025-07-15 22:42
URL: /phpmyfaq/index.php?action=artikel&cat=1&id=202&artlang=en

/phpmyfaq/index.php?action=artikel&cat=1&id=202&artlang=en

Moab
on my system when it is “idle”:

--

Name State Procs Memory Opsys

node00 Idle 3:4 32202:32202 linux

node01 Idle 3:4 32202:32202 linux

----- --- 6:8 64404:64404 -----

Total Nodes: 2 (Active: 0 Idle: 2 Down: 0)

We have “lost” two procs! There are so many background daemons and other
activities running on my system that Moab shows that here are only 6 procs
available. On this test system, moab, torque and the compute nodes are all on a
desktop computer with 8 cores, so there is a lot of background activity.

But, this exercise shows CLEARLY that with NODEAVAILABILITYPOLICY
COMBINED:PROC, Utilized can be greater than 0 without even running one job with
Moab.

On our “idle” system, let’s execute the same command:

echo sleep 100|msub -l nodes=1:ppn=1,walltime=200

Here is what “mdiag -n” shows:

Name State Procs Memory Opsys

node00 Idle 3:4 32202:32202 linux

node01 Running 3:4 32202:32202 linux

----- --- 6:8 64404:64404 -----

Total Nodes: 2 (Active: 1 Idle: 1 Down: 0)

--

Hmmm...we still have 6 procs available. Actually right after executing the job,
“mdiag -n” only showed 5 available, but after about 30 seconds it showed 6. It is
very easy to understand DEDICATED resources, but since COMBINED is based also
on Load Average the situation is more dynamic and depends on OS features. If fact,
imagine that this job had launched several cpu intensive processes that fully
utilized 3 procs. If NODEAVAILABILITYPOLICY were DEDICATED:PROC “mdiag -n”

Page 5 / 7
(c) 2025 Shawn Hoopes <shoopes@adaptivecomputing.com> | 2025-07-15 22:42

URL: /phpmyfaq/index.php?action=artikel&cat=1&id=202&artlang=en

/phpmyfaq/index.php?action=artikel&cat=1&id=202&artlang=en

Moab
would show 7 idle procs whereas with COMBINED:PROC, idle procs would be about 4
(depending on Load Average),

If we quickly execute the same sleep job 7 more times “mdiag -n” shows:

Name State Procs Memory Opsys

node00 Busy 0:4 32202:32202 linux

node01 Busy 0:4 32202:32202 linux

----- --- 0:8 64404:64404 -----

Total Nodes: 2 (Active: 2 Idle: 0 Down: 0)

All 8 jobs run as expected; however, notice that both nodes are marked “Busy”.And
if we execute the command one more time, the job is eligible but does not run
because there are no more procs available, eventhough the system is 90% idle.

 Moab will not allow more than 1 job to be run on a proc, no matter what the Load
Average is.

What about NODEAVAILABILITYPOLICY UTILIZED:PROC? Currently UTILIZED:PROC
and COMBINED:PROC function the same. However, in the future UTILIZED:PROC
may be changed such that

AvailableProcs = Configured – Utilized

That would allow more then 1 job per proc. It is recommended that UTILIZED:PROC
not be used since its definition may change in the future.

Effects of NODEALLOCATIONPOLICY

Let’s start with these settings:

JOBNODEMATCHPOLICY EXACTNODE

NODEAVAILABILITYPOLICY COMBINED:PROC

NODEALLOCATIONPOLICY CPULOAD

While NODEAVAILABILITYPOLICY helps Moab decide which nodes are BUSY,

NODEALLOCATIONPOLICY helps Moab decide on which nodes a job will run.

Page 6 / 7
(c) 2025 Shawn Hoopes <shoopes@adaptivecomputing.com> | 2025-07-15 22:42

URL: /phpmyfaq/index.php?action=artikel&cat=1&id=202&artlang=en

/phpmyfaq/index.php?action=artikel&cat=1&id=202&artlang=en

Moab
Let’s examine what happens when we select COMBINED:PROC and CPULOAD (see
above). CPULOAD will cause Moab to select nodes that have the lowest cpu
utilization (Load Average).

Starting with an idle system, “mdiag -n” shows:

Name State Procs Memory Opsys

node00 Idle 3:4 32202:32202 linux

node01 Idle 4:4 32202:32202 linux

----- --- 7:8 64404:64404 -----

Total Nodes: 2 (Active: 0 Idle: 2 Down: 0)

Just as in the previous experiment, COMBINED:PROC shows idle procs as less than
the number configured. In fact as I watch the screen it varies between 6 and 7
depending on daemons, my typing, etc.

Let’s execute this command repeatedly.

echo sleep 100|msub -l nodes=1:ppn=1,walltime=200

The result will be very similar to the previous experiment except the nodes will be
kept balanced with respect to cpu utilization. For example, job1 → node00, job2 →
node01, job3 → node00, …
Unique solution ID: #1202
Author: William Groves
Last update: 2018-03-05 21:59

Powered by TCPDF (www.tcpdf.org)

Page 7 / 7
(c) 2025 Shawn Hoopes <shoopes@adaptivecomputing.com> | 2025-07-15 22:42

URL: /phpmyfaq/index.php?action=artikel&cat=1&id=202&artlang=en

http://www.tcpdf.org
/phpmyfaq/index.php?action=artikel&cat=1&id=202&artlang=en

